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Abstract We present an analysis of methane (CH4) emissions using atmospheric observations from 13
sites in California during June 2013 to May 2014. A hierarchical Bayesian inversion method is used to
estimate CH4 emissions for spatial regions (0.3° pixels for major regions) by comparing measured CH4 mixing
ratios with transport model (Weather Research and Forecasting and Stochastic Time-Inverted Lagrangian
Transport) predictions based on seasonally varying California-specific CH4 prior emission models. The
transportmodel is assessed using a combination ofmeteorological and carbonmonoxide (CO)measurements
coupled with the gridded California Air Resources Board (CARB) CO emission inventory. The hierarchical
Bayesian inversion suggests that state annual anthropogenic CH4 emissions are 2.42 ± 0.49 Tg CH4/yr (at 95%
confidence), higher (1.2–1.8 times) than the current CARB inventory (1.64 Tg CH4/yr in 2013). It shouldbe noted
that undiagnosed sources of errors or uncaptured errors in the model-measurement mismatch covariance
may increase these uncertainty bounds beyond that indicated here. The CH4 emissions from the Central Valley
and urban regions (San Francisco Bay and South Coast Air Basins) account for ~58% and 26% of the total
posterior emissions, respectively. This study suggests that the livestock sector is likely themajor contributor to
the state total CH4 emissions, in agreementwith CARB’s inventory. Attribution to source sectors for subregions
of California using additional trace gas species would further improve the quantification of California’s CH4

emissions andmitigation efforts toward theCaliforniaGlobalWarming SolutionsAct of 2006 (Assembly Bill 32).

1. Introduction

California has committed to an ambitious plan to reduce greenhouse gas (GHG) emissions to 1990 levels by
2020 through Assembly Bill 32 (AB-32), which requires accurate accounting of CH4 emissions for effective
mitigation planning and verification of future emission reductions. The state official GHG inventory reports
that California currently emits a total of approximately 459.3 Tg CO2 (1 Tg = 1012 g) equivalent GHGs each year
[California Air Resources Board (CARB), 2015]. The CARB GHG inventory is produced in support of AB-32, thus
only includes anthropogenic emission sources. Among the reported GHGs, ~9% of the total GHG emissions
are attributed to methane (CH4), which is the second largest contributor to climate forcing emissions in
California behind carbon dioxide (CO2) [CARB, 2015]. Moreover, as shown in previous studies [e.g., Jeong
et al., 2013, 2014] CH4 emissions in California are relatively uncertain compared to those of CO2 due to lack
of activity data and incomplete understanding of emission processes, and top-down studies can be compli-
cated by California’s diverse emission sources, complex topography, and weather patterns.

Several recent studies have estimated CH4 emissions in different regions of California using measurements
from ground towers, aircrafts, and satellites. At the regional scale, Zhao et al. [2009] and Jeong et al.
[2012a, 2013] estimated CH4 emissions using towers in the Central Valley. In particular, Jeong et al. [2013] con-
ducted the first multisite analysis of CH4 emissions in California based on measurements from five ground
sites and across seasons (10months during 2010–2011) and estimated a state total of 2.03–2.71 Tg CH4/yr
(at 68% confidence). Wecht et al. [2014] used airborne measurements during a short-period campaign
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(May–June 2010) and estimated a total of 2.65–3.07 TgCH4/yr (at 68% confidence) based on a different prior
emission model that resulted in a different source apportionment from that of Jeong et al. [2013], attributing
significantly higher emissions to landfill and wastewater.

At the subregional scale, most studies focused on the urban regions of Southern California [e.g.,Wunch et al.,
2009; Hsu et al., 2010;Wennberg et al., 2012; Peischl et al., 2013]. Although the urban studies relied on different
analysismethods (e.g., ratio ofCH4 toCO (carbonmonoxide)) andmeasureddata fromdifferent years, the focus
region for each study generally covered the South Coast Air Basin (SoCAB) of California. For SoCAB, the esti-
mated CH4 emissions ranged from 280 to 700GgCH4/yr (based on the reported uncertainty estimates;
1 Gg = 109 g). In another study, Jeong et al. [2014] estimated statewide CH4 emissions from petroleum produc-
tion and the natural gas system, taking a unique approach of combining a bottom-up inventory with results
from a field campaign.

Here we expand on previous work by Jeong et al. [2012a, 2013, 2014] to quantify both urban and rural CH4

emissions from California, presenting the first analysis of full annual CH4 emissions from California using
atmospheric observations from 13 tower sites covering all major CH4-emitting regions of California. In parti-
cular, this study uses the hierarchical Bayesian approach introduced by Ganesan et al. [2014] for the purpose
of GHG emission quantification. The hierarchical approach has the advantage of being less reliant on choices
of parameters such as the prior uncertainty andmodel-measurement mismatch uncertainty because they are
estimated from probability distributions using additional parameters (i.e., hyperparameters). Moreover, these
parameters are fully propagated in the inverse optimization for estimating emission fluxes. The hierarchical
approach is a preferred choice for pixel-based (i.e., high resolution) inversions as in this study because hier-
archical models are more favorable with the case where there are more parameters than data points [Gelman
et al., 2014]. Hierarchical models have been widely applied to other similar fields [e.g., Clark, 2003; Riccio et al.,
2006; Moraes et al., 2014], and this study demonstrates the utility of the hierarchical approach for GHG emis-
sion estimation. In particular, we illustrate how uncertainty in the inversion can be treated by a combination
of our best a priori knowledge of error sources (e.g., transport error) and statistical inference and how ground-
based multitower measurements can be effectively used to constrain regional emissions. In section 2, we
describe the methods we employed, including atmospheric measurements, a priori CH4 emissions, transport
modeling, and the hierarchical Bayesian inverse method. Section 3 presents results, including the inferred
CH4 emissions from California for different regions and sources. Section 4 further discusses the results, and
section 5 presents the conclusions for CH4 emissions in California.

2. Data and Methods
2.1. CH4 Measurements and Background

CH4 measurements were made at the collaborative 13-site GHG network across California during June 2013
to May 2014. The information of sites and data availability is summarized in Table 1 (see Figure 1 for site loca-
tions). Detailed information regarding measurement methods for the Central Valley sites are summarized in

Table 1. GHG Sites Information Across California

Site Location Latitude Longitude Inlet Height (m agl)a Data Availability

ARV Arvin 35.24 �118.79 10 June 2013 to May 2014
CIT Caltech, Pasadena 34.14 �118.12 10 June 2013 to May 2014
LVR Livermore 37.67 �121.71 27 June 2013 to May 2014
MAD Madera 36.87 �120.01 10 June 2013 to May 2014
STB Sutter Buttes 39.21 �121.82 10 June 2013 to May 2014
STR San Francisco 37.76 �122.45 232 June 2013 to May 2014
THD Trinidad Head 41.05 �124.15 20 June 2013 to August 2013
TRA Tranquility 36.63 �120.38 10 June 2013 to April 2014
TSB Tuscan Buttes 40.26 �122.09 10 June 2013 to May 2014
VTR Victorville 34.61 �117.29 90 June 2013 to August 2013
WGC Walnut Grove 38.27 �121.49 91 June 2013 to May 2014
SBC San Bernardino 34.09 �117.31 58 June 2013 to May 2014
SIO Scripps Institution of Oceanography 32.87 �117.26 10 June 2013 to May 2014

aInlet heights used in the inversion.
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Jeong et al. [2012a, 2013] and Andrews et al. [2014]. Here we briefly describe measurements as a component
of the inverse modeling framework. All sites are operated with temperature- and pressure-controlled cavity
ring-down CH4 gas analyzers (Picarro Inc.), permeation-tube gas sample driers, and periodic calibrations
using either primary National Oceanic and Atmospheric Administration (NOAA) CH4 gas standards or second-
ary gas standards. For this study, we added four new sites in Southern California: Caltech, San Bernardino,
Scripps Institution of Oceanography, and Victorville (VTR), and two sites for the San Francisco Bay Area
(SFBA): Livermore and Sutro Tower (STR). All new sites except STR had similar instrumentation to existing
sites, while STR employed daily flask samples collected for approximately 2min near 14:00 local standard
time (LST) for subsequent analysis at NOAA Earth System Research Laboratory. Measurements at Trinidad
Head (THD) were made by a flame ionization gas chromatography (FIGC) system as part of the Advanced
Global Atmospheric Gases Experiment (AGAGE) network [Prinn et al., 2000]. The Tohoku University calibration
scale used by AGAGE is indistinguishable from the NOAA04 calibration scale used for our Picarro measure-
ments, with a relative scale factor of 1.0003 [Hall et al., 2014]. Thus, no corrections for scale differences were
applied. In addition, we assume that the isotopic effect in transferring the NOAA standards that are calibrated
by FIGCmeasuring all CH4 isotopologues to the Picarro instrument (measuring only the predominant CH4 iso-
topologue) is negligible. For continuousmeasurement sites, calibrated data were averaged to hourly intervals
and then 3 hourly intervals for inversions following the procedure in Jeong et al. [2012a, 2013]. All sites are
expected to provide measurement precision that is smaller than the CH4 synoptic variations typically
observed in the ambient air and with absolute accuracy sufficient to provide negligible bias in estimating
the scaling relationship between observed and predicted CH4 signals.

Following previous work [e.g., Haszpra, 1999; Matross et al., 2006; Gourdji et al., 2010; Miller et al., 2013; Jeong
et al., 2013], we selected measurements that coincided with periods when the atmospheric boundary layer
was well mixed to avoid the impact of large uncertainties associated with modeling the nocturnal boundary
layer. For the Walnut Grove Tower (WGC) we explicitly evaluated atmospheric mixing usingmeasured vertical
CH4 profiles. As in Jeong et al. [2012a, 2013], WGC data from 91m were selected in the time window between
12:00 and17:00 LST, subject to the requirement that theCH4mixing ratio difference (C91–C483) between91 and
483m fell within the range of�1 SD< (C91–C483)< 3 SD, where SD is the standard deviation of the 91–483m
difference. This additional requirement retained approximately 80% of data in the 12:00–17:00 LST window.
We selected all data in the afternoon timewindow (12:00–17:00 LST) for other siteswithout profile information.

The predicted CH4 upstream boundary values were estimated using a similar method to the one used in
Jeong et al. [2012b, 2013]. The details for estimating the boundary values are described in Jeong et al.
[2013], and only a summary is provided here. CH4 boundary values were estimated using data from the

Figure 1. (a) CALGEM total (1.7 Tg CH4/yr, 1 Tg = 1012 g) prior emissions (nmol/m2/s) with locations of measurement sites
across California and (b) region classification (California air basins).
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Pacific coast aircraft network CH4 profiles (http://www.esrl.noaa.gov/gmd/ccgg/aircraft/) and remote Pacific
marine boundary layer sampling sites (http://www.esrl.noaa.gov/gmd/ccgg/flask.html) within the NOAA
Earth System Research Laboratory Cooperative Air Sampling Network. The data were smoothed and interpo-
lated to create a three-dimensional (3-D) curtain, varying with latitude, height, and time. To quantify the
errors associated with the 3-D curtain, we fit a smooth curve through the data and computed the seasonal
cycle of the root mean square of the residuals from the curve. Predicted background values were computed
for each hourly footprint simulation by sampling the curtain at each of the 500 particle trajectory endpoints
(near the domain boundary at 130°W) and calculating the average value.

2.2. A Priori CH4 Emission Model

This work used the California Greenhouse Gas Emission Measurements (CALGEM) project a priori CH4 emis-
sion model (henceforth CALGEM model, available at calgem.lbl.gov) described by Jeong et al. [2012a, 2013,
2014] with some modifications. The CALGEM emission model provides emissions by sector at a high spatial
resolution (0.1° × 0.1°) for California. The CALGEM model has seasonal components for wetlands and crop
agriculture only, and these seasonal emissions are combined with nonseasonal emissions to construct
monthly emission maps for inversions. The inversion approach using nonseasonal prior emissions is widely
used [e.g., Zhao et al., 2009; Jeong et al., 2012a, 2012b, 2013; Wecht et al., 2014; Cui et al., 2015; Turner et al.,
2015]. In particular, Jeong et al. [2012a, 2012b, 2013] showed that nonseasonal priors can provide information
on seasonality in the posterior emission.

In this study, the CALGEM prior emission distributions are scaled to match 2012 CARB state totals for anthro-
pogenic emission sectors [CARB, 2014], with small (<50GgCH4/yr) adjustments for some regions and sectors
(per ARB staff private communication). The spatial distribution of the dairy livestock emissions was revised by
incorporating the 2012 county-level dairy statistics from U.S. Department of Agriculture (http://www.nass.
usda.gov/Statistics_by_State/California/Publications/County_Estimates/) to the spatial distribution from
Jeong et al. [2013]. This revision changed the dairy livestock emissions for each region due to recent changes
in the number of dairy cows, in particular for SoCAB. The current dairy livestock emissions in SoCAB (Table 2)
decreased by ~50% compared to those (~80GgCH4/yr) of Jeong et al. [2013], which was based on the 2004
statistics reported in Salas et al. [2009], reflecting the decrease in the number of dairy cows in the region (see
Figure S1 in the supporting information for the trend of dairy cows in SoCAB). For natural wetlands, we used
the prior emission map from Jeong et al. [2013].

Table 2 provides annual CALGEM prior emissions used in this study by source and region, and Figure 1 shows
the annual total emission map for the CALGEM prior emission model along with the subregion classification.
The regions in this study are different from those in Jeong et al. [2013] and follow the California Air Basins
(http://www.arb.ca.gov/ei/maps/statemap/abmap.htm). Also, the prior emissions used in this study are 1.3
times higher than those used in Jeong et al. [2013] in both the state and Central Valley annual totals (see
Figure S2). In section 3, we compare inversion results between Jeong et al. [2013] and this study where differ-
ent prior emissions and inversion methods are used. Inversion results are summarized by region to be com-
pared with the prior emissions. Based on the prior emission estimates, the Central Valley (Regions 3 and 8,
Sacramento Valley (SV) and San Joaquin Valley (SJV), respectively) accounts for 55% of the total statewide
CH4 emissions and the two major urban regions (Regions 7 and 12, SFBA and SoCAB) account for 29% of
the total. In terms of source sectors, livestock emissions represent 52% of the state total emission followed
by landfills (20%) and natural gas (17%; petroleum production included). Livestock emissions are concen-
trated in Region 8 (San Joaquin Valley), where 86% (667GgCH4/775GgCH4) of the region’s total emissions
are from livestock. This is consistent with a recent study by Gentner et al. [2014] that suggests that the major-
ity of CH4 emissions in the San Joaquin Valley are from dairy operations.

2.3. Atmospheric Transport Modeling

We used the coupled Weather Research and Forecasting and Stochastic Time-Inverted Lagrangian Transport
(WRF-STILT) model for particle trajectory simulations [Lin et al., 2003; Skamarock et al., 2008; Nehrkorn et al.,
2010]. The WRF-STILT model has been used to constrain GHG emissions in many studies including airborne
measurement-based [e.g., Gerbig et al., 2003; Kort et al., 2008] and tower measurement-based [e.g., Zhao et al.,
2009; Jeong et al., 2012a, 2012b, 2013; Newman et al., 2013] applications. We adopt the setup used in Jeong
et al. [2013] to run the STILT model. In this setup, an ensemble of 500 STILT particles are run backward in time

Journal of Geophysical Research: Atmospheres 10.1002/2016JD025404

JEONG ET AL. METHANE EMISSIONS IN CALIFORNIA 13,034

http://www.esrl.noaa.gov/gmd/ccgg/aircraft/
http://www.esrl.noaa.gov/gmd/ccgg/flask.html
http://calgem.lbl.gov
http://www.nass.usda.gov/Statistics_by_State/California/Publications/County_Estimates/
http://www.nass.usda.gov/Statistics_by_State/California/Publications/County_Estimates/
http://www.arb.ca.gov/ei/maps/statemap/abmap.htm


for 7 days driven with meteorology from the WRF model (version 3.5.1) [Skamarock et al., 2008]. Hourly
predicted signals based on WRF-STILT are aggregated into 3 hourly averages for inverse modeling.

The WRF model simulations closely follow those described in Jeong et al. [2012a, 2012b, 2013] with some
modifications. Here we use version 3.5.1 of the WRF model [Skamarock et al., 2008]. As in Jeong et al.
[2013], we simulated meteorology for four different horizontal resolutions of 36, 12, 4, and two 1.3 km
(vertical levels = 50) using initial and boundary meteorological conditions provided by the North American
Regional Reanalysis (NARR) data set [Mesinger et al., 2006]. In this study, the1.3 kmdomain for themetropolitan
area of Los Angeles was extended to better resolve outflow from the SoCAB region into eastern valleys that

include the VTR site (see d04 in
Figure 2). As in Jeong et al. [2013] we
applied two-way coupling between
domains and 3-D analysis nudging at
the outer domain every 3 h using the
NARR product.

For surface physics, we use two
different land surface models (LSMs)
dependingon the locationof eachsite
as in Jeong et al. [2013]. As pointedout
in Jeong et al. [2013], this site-
dependent approach to the model
configuration is to avoid potential
biases in transport modeling. For the
Central Valley, we use the five-layer
thermal diffusion LSM (5-L LSM) to
account for irrigation in the land sur-
face process during summer while
using the Noah LSM [Chen and
Dudhia, 2001] for other seasons. This
is because the Noah LSM overesti-
mates the planetary boundary layer
(PBL) in the Central Valley without
considering irrigation properly (dry
surface leads to overestimation in
PBL) [Jeong et al., 2013]. For the urban
areas (e.g., SoCAB), we used the Noah
LSM following Newman et al. [2013].
Note that as in Jeong et al. [2013] we
run WRFmultiple times to implement

Table 2. Annual CALGEM CH4 Emissions by Region and Sector (Gg CH4)

Sourcea/
Regionb GBV (6) LC (5) LT (15) MC (4) MD (10) NC (2) NCC (9) NEP (1) SoCAB (12) SCC (11) SD (14) SFBA (7) SJV (8) SS (13) SV (3) Total

DLS 0.1 0.0 0.1 2.5 21.1 21.7 2.8 2.2 37.9 1.0 2.6 14.3 598.1 3.8 30.1 738.3
LF 1.1 1.5 0.0 2.6 8.2 2.3 9.0 1.1 157.0 14.3 26.3 53.9 28.7 3.1 26.4 335.4
NDLS 2.0 0.4 0.1 8.3 3.5 8.2 5.2 13.3 5.8 8.3 1.9 10.5 68.5 1.6 19.8 157.4
NG 0.2 0.4 0.2 2.3 5.5 1.7 4.0 0.4 112.2 17.4 16.2 38.8 51.1 3.1 29.8 283.3c

RM 0.1 0.1 0.0 2.1 2.5 0.4 0.9 0.1 12.0 1.2 2.2 10.0 4.3 0.5 3.3 39.7
WW 0.0 0.1 0.0 0.5 1.0 0.3 1.6 0.4 23.6 13.1 2.8 11.0 9.0 0.9 2.8 67.1
WL 0.3 0.0 0.0 0.5 0.1 0.2 0.2 9.9 0.9 0.5 0.2 4.1 14.0 0.1 7.1 38.1
CP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 47.8 49.2
Total 3.8 2.4 0.5 18.8 41.8 34.8 23.7 27.5 349.3 55.8 52.2 142.5 775.2 13.2 167.0 1708.6

aSectors include dairy livestock (DLS), landfill (LF), nondairy livestock (NDLS), natural gas including petroleum production and local processing (NG), petroleum
refining and mobile sources (RM), wastewater (WW), wetland (WL), and crop (CP; largely rice).

bThe number in the parentheses shows the region number shown in Figure 1.
cIncludes 24 Gg CH4/yr from petroleum seeps (CARB staff private communication).

Figure 2. WRF simulation domains and locations of wind profiler sites used
for the evaluation of WRF meteorology: CCO (Chico), SAC (Sacramento),
LVR (Livermore), CCL (Chowchilla), LHS (Lost Hills), LAX (Los Angeles Airport),
ONT (Ontario Airport), andMRV (Moreno Valley). The black dashed lines show
the 4 km (d03) and 1.3 km (d04 and d05) domains for WRF simulations.
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different model configurations appropriate to individual measurement sites mostly characterized by the air
basin each site belongs to.

We also use different PBL schemes depending on the location of the GHG site. As a default for urban areas, we
use the Mellor-Yamada-Nakanishi-Niino 2.5 level (MYNN2) PBL scheme [Nakanishi and Niino, 2006] coupled
with the Noah LSM. This is because we found that the Mellor-Yamada-Janjic (MYJ) scheme [Mellor and
Yamada, 1982; Janjić, 1990] often underestimates nighttime PBL, although it represents daytime PBL well.
For the Central Valley region we also use the MYNN2 PBL scheme except for summer, for which we used
the MYJ scheme as in Jeong et al. [2013] coupled with the 5-L LSM for the Central Valley site. Some sites
required improved representation of topographic influences on boundary layer meteorology during winter.
Based on the transport evaluation using predicted and measured CO data, we apply the Yonsei University
scheme [Hong et al., 2006] with additional parameterization that corrects for surface wind biases at sites with
complex topography (e.g., winter season in the southern San Joaquin Valley) [Jiménez and Dudhia, 2012].
Based on these configurations for the WRF-STILT model, we computed footprints (sensitivity of concentra-
tions to surface emission fluxes) for each measurement site to be used in the inversion (see equation (2)),
and seasonal mean footprints across the measurement sites are provided in Figure S3.

A more complete evaluation of the WRF model simulations and transport errors associated are described in
Bagley et al. (submitted to J. Geophy. Res.; henceforth, Bagley et al.), including a comparison of measured and
predicted CO for the same period as this study (June 2013 to May 2014). However, we note here that because
CO is emitted from sources with different spatial and temporal variations than CH4, the results of the CO
comparison need to be interpreted with care in ascribing uncertainties to CH4 emission estimates. In this
study, we apply previous results from Jeong et al. [2013] to parameterize the prior probability distribution
(instead of fixed values) for transport uncertainty and then update the prior uncertainty estimates using
the hierarchical Bayesian method as described below.

2.4. Bayesian Inverse Model

We used a hierarchical Bayesian inversion (HBI) [Ganesan et al., 2014] method to estimate regional CH4 emis-
sions in California. In this work we develop an HBI method with more complex structure in representing the
model-measurement mismatch matrix than Ganesan et al. [2014] for regional CH4 emission quantification.

We start with Bayes’ rule and describe each probability distribution in the hierarchical structure of parameters
that include the scaling factor (a set of factors used to adjust prior emissions, denoted as λ). Generally, Bayes’
rule can be applied to multiple parameters at different levels as

p ϕ; θ Djð Þ∝p D ϕ; θjð Þp ϕ; θð Þ ¼ p D ϕjð Þp ϕ θjð Þp θð Þ (1)

whereΦ and θ represent the generic parameters in vector form and D is the data used to estimate the para-
meters. The first line in equation (1) simply states the posterior probability is proportional to the likelihood
function and prior distribution for the parameters. The refactorization in equation (1) holds because the data
D depend only on the parameter ϕ (thus, θ is factored out) and the values of ϕ depend on the values of θ,
constructing a hierarchical structure. The transition of p(ϕ, θ) to p(ϕ|θ)p(θ) is by the property of a conditional
probability, given the dependence of ϕ on θ. Any probabilistic model that can be factorized in chains as
shown in equation (1) is a hierarchical model [Kruschke, 2015].

The general model in equation (1) can be applied to estimate surface emissions and their uncertainties. For
GHG applications, the parameter vectorϕ can be scaling factors for emission adjustment (or surface emission
itself). The vector θ can be a set of parameters including the hyperparameters (e.g., mean) that determine the
distribution for the scaling factor or surface emissions.

We use the following linear model for estimating scaling factors for regional emissions [Zhao et al., 2009;
Jeong et al., 2012a, 2012b, 2013; Wecht et al., 2014]

y ¼ Kλ þ v (2)

where y is the measurement vector (n× 1), which represents 3 hourly local mixing ratio time series after
subtracting background values, K= FE (an n× k matrix), F is the footprint (n×m), E is the prior emissions
(m× k), λ is a k× 1 vector for scaling factors with a covariance matrix Q (k× k), and v is a vector representing
the model-measurement mismatch with a covariance matrix R (n× n). In this study we solve for a vector of
195 for λ, which includes 0.3° × 0.3° grid cells (a total of 183) within the major regions (i.e., Regions 3, 7, 8,
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and 12). We aggregated grid cells from other 12 regions at the subregion scale so that the number of para-
meters can be reduced for those regions with low prior emissions and weak sensitivity to the measurement
sites. Thus, after solving for λ using the HBI method andmultiplying it by E, we can obtain posterior emissions
(a vector of m).

For the model in equation (2), the joint parameters we need to estimate are

Θ ¼ λ;μλ; σλ; σR; η; τf g (3)

where λ is the scaling factor, μλ is the prior (i.e., hyperparameter) mean for λ, and σλ is the uncertainty for
λ (i.e., square root of diagonal elements ofQ). In HBI using a samplingmethod, λ is sampled from a probability
distribution with mean μλ and standard deviation σλ, which are also estimated (as part ofΘ) instead of being
prescribed as in previous work [e.g., Jeong et al., 2013] (see supporting information for details]. σR, η, and τ are
the parameters used to construct the model-measurement mismatch matrix R (see below for the representa-
tion of R). The diagonal elements of R represent the total model-measurement mismatch errors that are pro-
pagated through the inversion, while Q is used to define the uncertainty level for the prior emission. These
two quantities need to be either prescribedwith known values or estimated. In HBI we estimate the joint para-
meter set simultaneously, using the measurements only once [Ganesan et al., 2014]. This joint estimation is
different from previous approaches [e.g., Jeong et al., 2013], where the covariance matrix R was prescribed
via explicit estimation without using atmospheric measurements. It is also different from other methods
where atmospheric measurements were used to optimize R, and measurements were thereafter also used
for inversions [e.g.,Michalak et al., 2005]. Depending on the number of measurement sites with data available
for eachmonthly inversion (σR is estimated for each of 10–13 sites), the total number of parameters to be esti-
mated ranges from 597 to 600 (195 for each of {λ,μλ, σλ} and a single estimate for each of {τ, η}). The number of
parameters is usually more than the number of measurements in our pixel-based inversion. We note that it is
often sensible to apply hierarchical models for cases where there are more parameters than observed data
points because the additional structure provided reduces problems with overfitting [Gelman et al., 2014].

With the parameter set identified, we need to write out the posterior probability up to the likelihood function
and prior probability densities. We apply the identified joint parameter (i.e.,Θ) to the general formulation of a
hierarchical model in equation (1) to express the posterior probability as

p λ;μλ; σλ; σR; η; τ yjð Þ∝p y λ; σR; η; τjð Þp λ μλ; σλjð Þp μλð Þp σλð Þp σRð Þp ηð Þp τð Þ (4)

where the right-hand side shows the likelihood function and the prior distribution for each parameter. Note
that in equation (4) all variables are in vector form except for η and τ. To build Markov chain Monte Carlo
(MCMC) samplers for the posterior distribution in equation (4), the JAGS system (just another Gibbs sampler)
[Plummer, 2003] is used together with the R statistical language (https://cran.r-project.org/). JAGS has been
widely used for statistical inference studies in many fields including ecology and genetics [Korner-Nievergelt
et al., 2015;McKeigue et al., 2010]. To demonstrate the flexibility of our inversion system, we derive a simplified
model compared to that in equation (4) and compare inversion results between the twomodels (see Text S3 in
the supporting information for more details). The individual probability distributions (i.e., probability density
functions) in equation (4) are described below.

First, for the likelihood function we use

p yjλ; σR; η; τð ÞeN Kλ;Rð Þ (5)

where N is the normal distribution with mean Kλ (n× 1) and covariance R (n× n). Note that y is conditionally
independent of all other parameters given λ, σR, η, and τ.

In order to estimate parameter values with Bayesian inference, prior uncertainty needs to be specified. In
the hierarchical model, we need to include prior uncertainty for the joint parameter set Θ using a series
of distributions. The scaling factor λ is sampled from a normal distribution (here truncated normal to avoid
negative emission fluxes [Miller et al., 2014; Michalak, 2008]) instead of a fixed value [e.g., Jeong et al., 2013;
Wecht et al., 2014] as

p λð ÞeN μλ; σλð Þ (6)

where μλ itself is sampled from a truncated normal distribution [Miller et al., 2014; Michalak, 2008] with a
mean of 1 and a standard deviation of 0.5 so that 68% of the samples are within 50~150% from the mean,

Journal of Geophysical Research: Atmospheres 10.1002/2016JD025404

JEONG ET AL. METHANE EMISSIONS IN CALIFORNIA 13,037

https://cran.r-project.org/


which is a similar setup to that of Ganesan et al. [2014]. Parameter σλ is modeled using a half-Cauchy distribu-
tion, which is one of the recommended distributions for model variances [Gelman and Hill, 2007; Gelman
et al., 2014; Korner-Nievergelt et al., 2015]. The hyperparameterization (“hyper” meaning the upper level in
the hierarchy) for σλ can formally be expressed as

σλ∼hCauchy 0; 1ð Þ (7)

where hCauchy is the half-Cauchy distribution. Note that we take the absolute value from the Cauchy distri-
bution so that we consider the positive values only (i.e., half-Cauchy). Equation (7) suggests that if we gener-
ate random samples (large enough) from equation (7) we get a median value close to 1. Thus, the use of 1 for
the half-Cauchy scale parameter (the larger the scale parameter is, the more spread out the distribution is) is
similar to assuming that the uncertainty for λ is 100% in the classical Bayesian inversion [e.g., Zhao et al., 2009;
Jeong et al., 2013]. The difference is that in this study σλ is sampled from a distribution with a heavy tail (see
Figure S4 for an example of half-Cauchy distribution) so that σλ can be optimized from a broad distribution
(instead of being a fixed value such as 50% of the mean emission).

For the model-measurement mismatch covariance matrix R, we use an exponential covariance function
[Rasmussen and Williams, 2006]

Ri;j ¼ η2exp �1
τ
ti � tj
�� ��� �

þ δi;jσ2Rs (8)

where η, τ, and σRs are the parameters that define the covariance function; t is the measurement time; and δ is
the Kronecker delta function (value of 1 if i= j, otherwise zero). We use two terms in equation (8) to ensure the
positive definiteness of R [Stan Development Team, 2015]. The second term in equation (8) (i.e., with the
Kronecker delta function) is analogous to the noise variance in the regression equation [Rasmussen and
Williams, 2006]. Note that here we use the L1 norm (i.e., |ti� tj|) as in Ganesan et al. [2014]. The subscript s
inσRs indicates that σR is estimated for each site as was done in Jeong et al. [2013] for their multitower analysis.
This set of multiple parameters for σR adds more complexity to the model (than estimating a single value for
σR) but also reflects the fact that model-measurement errors are not uniform across California.

We model σRS using the half-Cauchy distribution as in σλ [Gelman and Hill, 2007; Gelman et al., 2014;
Korner-Nievergelt et al., 2015]. The scale parameter (in the hyperparameter sense) for the half-Cauchy dis-
tribution for σRS is calculated using the first-order approximation method following Jeong et al. [2012a,
2012b, 2013] and used as

p σRsð ÞehCauchy 0; σRpjs
� �

(9)

where σRp|s is the first-order estimate for σRs and includes errors from several sources (e.g., transport and
background errors) combined in quadrature. A more detailed discussion of the methodology for the first-
order estimation of σRs can be found in Text S1 [Bianco and Wilczak, 2002; Bianco et al., 2008; Dye et al.,
1995; Gerbig et al., 2003; Göckede et al., 2010; Jeong et al., 2012a, 2012b, 2013; Lin and Gerbig, 2005;
Newman et al., 2013;Wyngaard and LeMone, 1980; Zhao et al., 2009]. More details for σRp|s are also described
in the following section.

For η, we use noninformative prior (i.e., uniform distribution) as

ηeunif 0; Lð Þ (10)

where η is allowed to vary from 0 to L with an equal probability of 1/L. In this study we use σRp|s as an upper
limit for L because in our choice of the covariance function η is estimated to be smaller than σR, and this
ensures the positive definiteness of the R covariance matrix, which is strictly checked in the JAGS sampler
(version 3.4) [Plummer, 2003].

Following Ganesan et al. [2014], we use the exponential distribution for τ as

τe exp 1
τp

� �
(11)

where τp is the hyperparameter for τ, which is assumed to be 7 days (typical synoptic time scale for transport
[Ganesan et al., 2014]). The posterior distributions for η and τ are provided in Figure S5 (midmonth for each sea-
son), and the complete structure of the R covariance matrix is also available in Figure S6. A more detailed
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discussion of themethodology for the convergence and accuracy of the estimatedparameters including those
for theRmatrixcanbe found inTextS2 [GelmanandRubin, 1992;Kassetal., 1998;Plummer, 2003;Kruschke, 2015].

2.5. Uncertainty Matrix

The posterior distribution in equation (4) is used to generate MCMC samples for the parameters (i.e., Θ) in
equation (3), which include the components of the error covariance matrices R and Q. In other words, we
estimate the model-measurement mismatch covariance matrix (i.e., R) and prior emission uncertainty (Q)
simultaneously with λ and other parameters (using the measurements just once) instead of using fixed
values. In the case of the R matrix, it can be estimated without assuming prior knowledge (e.g., uniform
distribution) or from a simple assumption for the hyperparameter as in Ganesan et al. [2014], where for
the hyperparameter of the variance component of R they used the sum of the fixed instrument uncertainty
and the uncertainty associated with propagating the calibration scale (0.05 pmol/mol, respectively). Here
we take a more informed approach by using site-specific values in constructing R, drawing on the
model-measurement mismatch uncertainties reported in Jeong et al. [2013] for the sites included in that
study: Arvin, Madera, Tranquility, WGC, and Sutter Buttes. For other sites, we estimated the model-
measurement uncertainty for summer of 2013 following the method from Jeong et al. [2012a, 2012b,
2013] (see Text S1 for details). For other seasons, we scaled the summer uncertainty estimates in proportion
to the monthly background-subtracted mean mixing ratio signal. We use these uncertainty values (i.e., σRp|s)
as the hyperparameter for σRs in the covariance function for R. As described above, σRp|s is used as the
scale parameter in the half-Cauchy distribution in equation (9) (see Table S1 in the supporting information
for σRp|s). As shown in equation (8), the diagonal elements of R were then calculated as the sum of squares
of σRs and η.

Figure 3 shows the (optimized) posterior model-measurement mismatch uncertainty (i.e., diagonal elements
of R) given the atmospheric measurements for several measurements sites that constrain the major emission
regions (SV, SJV, and SoCAB regions; see Figure S7 for the correlation between posterior and prior values
across the sites). As described, the HBI approach allows for simultaneous estimation of model-measurement
mismatch uncertainty values while inferring posterior emissions, using the measurements only once. This
means that the model-measurement mismatch uncertainty has posterior estimates given the prior (σRp|s)
and data (i.e., model predictions and measurements). Overall, the posterior values follow the trend of the
prior in seasonality and magnitude (Figure 3), although there are some differences between the prior and
posterior estimates depending on the site and season. This difference suggests that observations drive the
optimization constraining the uncertainty parameters (away from assumed values by our prior knowledge)
for some sites and seasons. In most sites, both the prior and posterior uncertainties are large during the
winter season when boundary layer heights are low and predicted mixing ratios are very sensitive to the
simulated boundary layer [Jeong et al., 2012a, 2013].

In our inverse model, the uncertainty in the prior emissions is expressed in terms of uncertainty in the scaling
factors (i.e., σλ, diagonal terms in Q). Here as with σR, the posterior values of σλ are also sampled from a half-
Cauchy distribution with a scale parameter of 1 (equation (7)). For the major emitting regions (3, 7, 8, and 12),
the region average of prior uncertainties for individual pixels is estimated to be ~150% (see Figure S8), which
is higher than the prescribed 70% in Jeong et al. [2013]. It is reasonable to expect this result because the pixel-
based inversions have many more degrees of freedom and hence larger per pixel uncertainties than aggre-
gate regions as in Jeong et al. [2013].

3. Results
3.1. State Total Emissions

State total emissions were estimated by optimizing 195 scaling factors each month (i.e., dimension of
λ = 195× 1) given the multisite measurements and multiplying them by the CALGEM prior emissions, which
were essentially the same as the CARB inventory at the subregion scale (see Figure 1 for each subregion). As
described, we estimate a scaling factor for each 0.3° pixel within the major emission regions (i.e., SV, SFBA,
SJV, and SoCAB), which account for 84% of the CALGEM total emission. For other regions, we estimated a scal-
ing factor for each region. Figure 4 compares predicted and background-subtracted measured mixing ratios
using all data (used in the inversion) available for each season and also shows linear regression analysis
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results. Before inversion, the regression analysis estimates best fit slopes to be 0.41–0.75 (predicted versus
measured). This simple analysis without full consideration of errors suggests that CH4 emissions are underes-
timated by the CARB inventory. After inversion, the best fit slope, root-mean-square error, and coefficient of
determination (R2; using the Spearman’s method) for each season are significantly improved.

Figure 3. Estimated diagonal elements of the model-measurement mismatch matrix R for CH4 inversions. The posterior
values were estimated using 25,000 MCMC samples, and the error bar represents the 95% confidence interval. The prior
values were estimated using the method described in Jeong et al. [2012a, 2012b, 2013] (see Text S1). For May at TRA and
September at WGC, the posterior values were not estimated because most of the measurements were not available.
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The HBI analysis estimates that the state total annual emission is 2.42 ± 0.43 Tg CH4/yr at 95% confidence not
including the (median) posterior estimate for natural wetlands (0.07 Tg CH4/yr). This estimate is equivalent to
1.2–1.7 times the anthropogenic CH4 emissions in CARB’s current official inventory for the year 2013
(1.64 Tg CH4/yr) [CARB, 2015]. Note that the state total in CARB’s current official inventory for 2013 is only
slightly different from the prior total in Table 2 after excluding the wetland emission. The state total emission
estimate from HBI is consistent with the annual emission estimate from Jeong et al. [2013], 2.38 ± 0.67 Tg CH4/
yr (at 95% confidence), which combined inverse model estimates for the Central Valley with urban emissions
estimated by Wennberg et al. [2012]. As described in section 2, the prior emissions used in this study are 1.3
times higher than those in Jeong et al. [2013]. Also, Jeong et al. [2013] used a simpler inversionmethod solving
for 13 parameters only (i.e., emissions for 13 subregions in California) compared to this study’s pixel-based
inversion. The good agreement between the two studies for the state annual total emissions indicates that
the atmospheric observations drive the inversion system, given the difference in both the prior emissions
and the inversion methods. In addition, as described in section 2.2 we performed the inversion using a sim-
plified model compared to the more complex one in equation (4). The simplified model uses prescribed
values (i.e., first-order estimates in Table S1) for the model-measurement mismatch uncertainty. The state
total emission estimated by the simplified model, described in Text S3 and Figure S9 (see supporting infor-
mation for the details [National Research Council, 2010; Jeong et al., 2012a, 2013]), differs by only 6% from
the HBI estimate, but it has larger uncertainties. Also, we performed a sensitivity test of estimated emissions
to well-mixed conditions, showing that there is no significant difference in the emission estimate between

Figure 4. Comparison of predicted and measured CH4 mixing ratios before (prior) and after (posterior) inversion for each season. The relatively low best fit slopes in
the prior comparison (left plot in each season) suggest that prior emissions are underestimated. The filled circles represent individual 3 h data points across different
sites used in the inversion. The gray dashed line indicates the 1:1 line, and the black solid line represents the best fit slope for the data shown. The regression
coefficients in the posterior plot were calculated based on the median values of the 25,000 MCMC samples. The gray shaded area in the posterior plot represents the
95% uncertainty region for the regression analysis using 25,000 MCMC samples.
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the cases with and without the application of data filtering based on the well-mixed criteria in section 2.2 (see
Figure S10 for more information).

As noted in the method section (section 2), transport model error could affect the estimate of CH4 emissions.
Comparison of predicted and measured CO mixing ratios at the four towers during June 2013 to May 2014
(same period as this study) yields near-unity slopes for the majority of sites and seasons (Bagley et al.),
suggesting that the WRF-STILT simulations are sufficient to estimate emissions of CO and likely other GHGs
across California to within 10%± 10% (at 95% confidence) on annual time scales. Based on this result, we add
a mean transport bias uncertainty of 10% in quadrature to our Bayesian statistical uncertainty estimates to
estimate total uncertainty in annual state total CH4 emissions. Adding the transport bias uncertainty increases
theuncertainty in stateannual anthropogenicCH4emissions from0.43 to±0.49 Tg CH4/yr (95%confidence; see
Table S2 for the details). If the potential bias in transport modeling that was found for CO is also applicable to
CH4, then the state annual anthropogenic CH4 emission becomes 10% lower, 2.18 ± 0.49 Tg CH4/yr, but still
1.0–1.6 times the CARB inventory (see Table S2 for the application of the CO-based bias). Undiagnosed
sources of uncertainty may increase these error bounds beyond that indicated here.

We estimate statewide CH4 emissions for each season because our measurements are available for a full
annual analysis (June 2013 to May 2014). This is the first analysis to estimate full seasonal CH4 emissions using
multitower measurements across California. Although Jeong et al. [2013] estimated seasonal CH4 emissions in
California using multitower measurements, they analyzed 10month data only (not including July and August
data) and did not constrain emissions from the Southern California region. Figure 5 shows the estimated
mean seasonal emissions for the state, which are the average of the monthly emissions belonging to the sea-
son. Note that the prior emissions in Figure 5 only partially account for seasonality because CALGEM has
monthly emissions for crop agriculture (largely rice) and wetlands but not other sources. Across seasons,
the posterior emissions are greater than the prior emissions without strong evidence for seasonality, similar
to previous work by Jeong et al. [2013].

3.2. Emissions in Rural and Urban Regions

The hierarchical Bayesian inversion using multiple sites across California constrains CH4 emissions from a sig-
nificant portion of both rural and urban regions in California. In particular, the inverse analysis in this study
yields a large reduction in the posterior uncertainty for the urban regions of California (e.g., SoCAB) compared
to the inverse analysis by Jeong et al. [2013], where urban regions were undersampled. We first examine the
emissions for the rural regions of California, focusing on the Central Valley because it accounts for ~90% of
the total rural emissions based on the CALGEM prior emission.

Figure 5. Inferred CH4 emissions using measurements from 13 sites for four seasons: summer (JJA), fall (SON), winter (DJF),
and spring (MAM). The error bar represents the 95% confidence interval around the median value of the posterior emission
estimate.
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Figure 6 shows the comparison
between prior and posterior emis-
sions for the major emission regions
that account for 84% of the state total
in the CALGEM prior emission, includ-
ing the Central Valley of California
(see Table 3 for all regions). We
estimate that the Central Valley
(Regions 3 and 8) emissions are
1.02–1.74 TgCH4/yr (at 95% confi-
dence, median = 1.38 Tg CH4/yr).
These estimates are consistent with
the annual emission for the Central
Valley estimated by Jeong et al.
[2013], 1.57 ± 0.20 Tg CH4/yr (95%
confidence). Similarly, Wecht et al.
[2014] estimated 1.23 Tg CH4/yr for
the Central Valley using a different
transport model, although it was only
during the early summer period
(May–June 2010). These results sug-

gest that emissions from the Central Valley are underestimated in the CALGEM prior emissions
(0.94 Tg CH4/yr). The spatial distribution of posterior emissions is shown in Figure 7 along with comparison
with the CALGEM prior field. As can be seen in the figure, the posterior emissions for some of the pixels in
the Central Valley are significantly larger than the prior. However, it should be noted that the uncertainty
range for those pixels is also significantly large. This result shows that although the emissions at the subre-
gional scale are well constrained in the Central Valley (aggregated error at 95% confidence is ~25% of the
posterior total of the valley), the emission uncertainties for many of the individual pixels are still high.
Bergamaschi et al. [2005] and Jeong et al. [2012a, 2013] reported that posterior emissions show anticorrelations
between regions, suggesting that there could be some trade-offs of posterior emissions between regions. In
this study, using pixel-based inversion for major emitting regions we have significantly reduced the anticorre-
lation in the posterior emissions at the subregional scale (e.g., between Region 3 and Region 7) to 0–20%, com-
pared to those (up to 60%depending on the season) of Jeong et al. [2012a] (see Figure S11). This indicates that
our total emission for each subregion is much more independent than those of Jeong et al. [2012a, 2013].

For urban emissions of California, we focus on emissions from the two major urban regions (SoCAB and
SFBA). According to the CALGEM prior, the two urban regions account for 25% of the state total emissions.
The HBI analysis estimates that the posterior emissions are 301–490GgCH4/yr (median = 380, 95% confi-
dence) for Region 12 (SoCAB), which are 0.9–1.4 times the prior (349Gg/yr). This suggests that the prior inven-
tory for SoCAB is consistent with our posterior estimate. Our posterior estimate is also consistent with the
results of most of the recent studies that were conducted in SoCAB [Wunch et al., 2009; Hsu et al., 2010;
Wennberg et al., 2012; Peischl et al., 2013;Wecht et al., 2014;Wong et al., 2015; Cui et al., 2015]. Figure 8 shows
the comparison of estimated CH4 emissions for SoCAB among eight different recent studies including this
study. The estimate (600GgCH4/yr) by Wunch et al. [2009] using the CH4/CO2 ratio is likely the upper limit
for SoCAB CH4 emissions and is not included in this comparison. Although the estimated emissions are
consistent among the different studies given the reported uncertainty, there are some differences in the
mean/median estimates. These differencesmay arise from different assumptions and undiagnosed uncertain-
ties (e.g., spatial distribution of bottom-up emissions, transportmodel errors, and different seasonal coverage).
For example, most of the studies in SoCAB rely on the combination of measured CH4 to CO2 or CO ratios and
the bottom-up inventory of CO2 or CO, with uncertainties that assume that those inventories are relativelywell
known (e.g., 10% uncertainty assumption in CO2 inventory byWong et al. [2015]).

This study constrains CH4 emissions for SFBA with a significant reduction in the posterior uncertainty, com-
pared to Jeong et al. [2012a, 2013]. We estimate the posterior emissions for SFBA to be 159–340GgCH4/yr
(median= 245, at 95% confidence). These emission estimates are consistent with those reported by Fairley

Figure 6. Estimated annual CH4 emissions for the major emission regions (at
95% confidence). Regions 3, 7, 8, and 12 represent the Sacramento Valley
(SV), San Francisco Bay Area (SFBA), San Joaquin Valley (SJV), and South Coast
(SoCAB) air basins, respectively.
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and Fischer [2015], where they reported a total of 240 ± 60Gg/yr (at 95% confidence) for the recent period of
2009 to 2012 using CH4:CO enhancement ratios from 14 air quality sites in SFBA. For SFBA, we have two
bottom-up estimates to be compared with our inverse analysis: CALGEM emission model (143Gg CH4/yr; see
Table 2) and the Bay Area Air Quality Management District (BAAQMD) inventory (126Gg CH4/yr [Bay Area Air
Quality Management District, 2015]). Compared to bottom-up estimates, actual CH4 emissions in the SFBA are
likely1.1–2.4and1.3–2.7 times larger thantheCALGEMpriorandBAAQMD’s inventory, respectively, suggesting
that both inventories are lower than our posterior estimate.

3.3. Source Attribution of Emissions

We investigate the likely sources of emissions in the rural and urban regions of California. We estimate CH4

emissions from different sources assuming the spatial distribution of the CALGEM emission model. Based

Table 3. Posterior Annual Emission Estimates (Gg CH4/yr) by Region

Regionsa
1

(NEP)
2

(NC)
3

(SV)
4

(MC)
5

(LC)
6

(GBV)
7

(SFBA)
8

(SJV)
9

(NCC)
10
(MD)

11
(SCC)

12
(SoCAB)

13
(SS)

14
(SD)

15
(LT)

Prior 28 35 167 19 2 4 143 775 24 42 56 349 13 52 1
HBI
posterior
(upper)b

186 144 360 84 20 23 340 1486 180 243 162 490 68 145 2

HBI posterior (lower)c 1 1 164 1 0 0 159 859 1 1 1 301 1 37 0

aRegion abbreviations are shown in the parentheses.
b97.5th percentile.
c2.5th percentile.

Figure 7. Estimated annual CH4 emissions from the HBI analysis: (a) posterior (median) annual emissions (Gg/yr), (b) ratio of
posterior to prior, (c) ratio of estimated 97.5th percentile to prior, and (d) ratio of estimated 2.5th percentile to prior.
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on this assumption, we scale indivi-
dual sector prior emissions at each
pixel or region by the inferred scaling
factors from the HBI analysis. Figure 9
(left) shows the posterior annual
emissions for the HBI analysis by sec-
tor. The posterior emissions (804–
1410GgCH4/yr, median = 1070Gg)
for thedairy livestockare1.1–1.9 times
larger than the prior emissions.
Assuming thedistribution of the prior,
the posterior estimates for the non-
dairy livestock (199–345GgCH4/yr,
median = 263Gg) are also 1.3–2.2
times larger than the prior. The
combined total emissions for dairy
and nondairy livestock emissions
(1050–1699GgCH4/yr) are 1.2–1.9
times higher than the CALGEM prior.
The underestimate in prior livestock
emissions agrees with the results
described in the region analysis that
posterior emissions in the Central
Valley (Regions3and8) are larger than

theCALGEM prior. This is also consistent with the reported livestock emissions (1265–1805GgCH4/yr, at 95%
confidence) by Jeong et al. [2013]. A recent global study suggests a similar underestimation for manure man-
agement in a bottom-up inventory. Based on published data on field-scale measurements of GHG emissions,
Owen and Silver [2015] report that predicted CH4 emissions by the Intergovernmental Panel on Climate
Change Tier 2 method are lower than the mean estimates using the field measurements for most manure
management practices. However, we caveat the source attribution above because the spatial distribution
of sources by sector may not be perfectly captured in the CALGEM model. In terms of seasonality by sector,
Figure 9 (right) suggests that except for wetland (WL) and crop emission (CP), the seasonal variation in the
emissions is small, showing similar seasonal posterior emissions within error (Figure 9).

Figure 8. Comparison of the CALGEMprior (total for SoCAB = 349 Gg CH4/yr)
and estimated CH4 emissions for SoCAB in the eight different recent studies
including the posterior emission from this study. The value fromWunch et al.
[2009] shows the CO-based estimate. Originally, Hsu et al. [2010] reported LA
County emissions (at 200 Gg CH4/yr), and Wennberg et al. [2012] expanded
the Hsu et al. results to the full SoCAB. The uncertainty estimates are 68%
confidence intervals reported by the individual studies.

Figure 9. Posterior (left) annual and (right) seasonal emissions (Gg CH4/yr) estimated from the HBI analysis by sector: dairy
livestock (DLS), nondairy livestock (NDLS), landfill (LF), natural gas including petroleum production (NG), petroleum refining
and mobile sources (RM), wastewater (WW), crop agriculture (CP; largely rice), and wetland (WL). The error bar represents
the 95% confidence interval.
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Our inverse analysis also suggests that actual natural gas (NG; includes petroleum production) and landfill
(LF) emissions are likely larger than the prior emissions. Our posterior NG emissions (305–502GgCH4/yr)
are higher than the prior (283Gg; see Figure 9) used in this study but consistent with that (331GgCH4/yr) esti-
mated by Jeong et al. [2014], where they find that their spatially explicit bottom-up inventory for NG itself is
generally lower than those of top-down analyses [e.g., Peischl et al., 2013;Wennberg et al., 2012]. The result for
seasonal emissions by sector in Figure 9 (right) shows that the seasonal variation for NG and LF is small, con-
sistent among seasons within error. Other sources, including petroleum refining and mobile (RM), waste-
water, crop (rice) emissions (CP), and wetlands (WL) are generally similar between prior and posterior
emissions. The rice emissions are 39–101GgCH4/yr (at 95% confidence), which are consistent with those
of Jeong et al. [2013] (68 ± 18Gg, at 95% confidence) and Peischl et al. [2012] (~85Gg).

4. Discussion

We further discuss likely source emissions by comparing our estimates with results from previous studies.
Jeong et al. [2013] estimated annual CH4 emissions from the livestock source sector in the San Joaquin
Valley (Region 8) to be 1.13 ± 0.42 TgCH4/yr (at 95% confidence), significantly higher than all other sources
combined in the region. This is consistent with the finding by Gentner et al. [2014], who concluded that
the “vast majority” of the total emissions in San Joaquin Valley are due to dairy operations. In another similar
study,Guha et al. [2015] used collocatedmeasurements of CO and various volatile organic compounds (VOCs;
e.g., alkanes) and a positive matrix factorization technique to estimate the contribution of regional sources to
observed enhancements of CH4. The results in Guha et al. [2015] indicate that the livestock emissions account
for a majority of the CH4 (70–90%, uncertainty = 29%) enhancements based on measurements near
Bakersfield, CA, during May–June 2010. The reported 29% uncertainty is calculated from the standard devia-
tion in themass fraction of CH4 attributed to the dairy source factor profile as estimated from a bootstrapping
method. Although these two studies do not report estimated emissions by mass, they suggest that a signifi-
cant portion of the total CH4 emission in the San Joaquin Valley (Region 8) is attributed to the livestock sector.

More quantitatively, Jeong et al. [2014] estimated CH4 emissions from the natural gas sector (petroleum
production included) for the state based on activity data and reported emission factors (mostly from U.S.
Environmental Protection Agency). They estimated the emission from the natural gas sector to be
128GgCH4/yr for the San Joaquin Valley; the majority of which was from petroleum and natural gas produc-
tion. After adjusting this bottom-up estimate based on the result in SoCAB by Peischl et al. [2013], they
estimated the natural gas emission in San Joaquin Valley to be 162.6 Gg CH4/yr, with the San Joaquin
Valley accounting for 30% of the state total natural gas emissions. The adjusted natural gas emission
(i.e., 162.6 Gg) by Jeong et al. [2014] is 11–19% of the annual total emissions (0.86–1.49 TgCH4) in the
San Joaquin Valley estimated in this study, which is consistent with Gentner et al. [2014], Guha et al. [2015],
and Jeong et al. [2013]. Note that, based on the CALGEM prior, the San Joaquin Valley emits 82% of the total
CH4 emissions in the Central Valley; 86% of which are from the livestock sector. These results suggest that our
a priori assumption about the ratio of livestock emissions to the total in the San Joaquin Valley is likely similar
to the source attribution of the actual emissions in Region 8. Furthermore, our source analysis indicates that
the posterior emissions for landfill, natural gas, and wastewater are generally consistent with or slightly
higher than our CALGEM prior, and livestock emissions are higher than the prior, although this is a statewide
result (see Figure 9, left). Given this source analysis result, the higher posterior emissions in the San Joaquin
Valley (Region 8) from our region analysis (1.1–1.9 times the CALGEM prior) are likely mainly due to
livestock sources.

We also examine the emissions in SoCAB for possible source attributions by combining the results from this
study and other previous work. Wennberg et al. [2012] suggest that the majority of the CH4 enhancements
observed are likely due to natural gas activities, while Peischl et al. [2013] estimate 192± 54GgCH4 for the
combination of emissions from natural gas transmission and distribution plus local seeps and 32
± 7GgCH4 for oil and gas production and processing. Hence, the total of fossil fuel-related activities from
Peischl et al. [2013] is 224 ± 55GgCH4, assuming uncorrelated errors in the above estimates. This estimate
is larger than our CALGEM prior for the combined total from the natural gas (NG) and refining and on-road
mobile (RM) sectors of 124Gg (see Table 2) by a factor of 1.4–2.3, suggesting an underestimate for total fossil
fuel-related emissions in the CALGEM prior for SoCAB. Lyon et al. [2015] reported a similar result in a recent
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subregional-scale study for the Barnett Shale region, where they estimated higher CH4 emissions from the oil
and gas sector than three inventories by factors of 1.5–4.3. It should be noted that the emission estimates for
SoCAB in most of recent studies [e.g.,Wennberg et al., 2012] including ours include emissions from petroleum
seepage and abandoned wells in the total without distinguishing these as nonanthropogenic emissions. For
landfill, wastewater, and livestock sectors, the CALGEM prior estimates 224GgCH4/yr for SoCAB, which is con-
sistent with that (182 ± 54GgCH4/yr) of Peischl et al. [2013]. For livestock, Cui et al. [2015] estimates emissions
in SoCAB to be 52± 15GgCH4/yr, which is consistent with the CALGEM prior (44 Gg CH4/yr). Last, Cui et al.
[2015] also estimated a combined CH4 emission of 347 ± 71GgCH4/yr for the landfill and natural gas sectors.
This also indicates that natural gas emissions are likely larger than the CALGEM natural gas prior, because
their minimum estimate (276Gg) for the landfill and natural gas sectors is larger than that of the CALGEM
prior for natural gas and landfills together (268Gg). Taken together, these results suggest that while the prior
emissions (SoCAB total of 349Gg) are toward the low end of most of the top-down estimates in SoCAB,
underestimation in NG emissions from the CALGEM prior model is possible as indicated by the higher
top-down estimates from Peischl et al. [2013] and Cui et al. [2015].

5. Conclusions

We presented the first analysis of a full annual CH4 emission budget from California using atmospheric obser-
vations from 13 tower sites covering all major CH4-emitting regions of California. Our analysis suggests that
California’s actual emissions are likely 1.2–1.8 times larger than a recent state inventory [CARB, 2015]. Ourmea-
surement network across California constrains CH4 emissions from California’s urban and rural emissions, and
the addedmeasurement sites to the CH4 network significantly reduced the posterior uncertainty estimates. In
particular, this study constrains the San Francisco Bay Area’s CH4 emissions for the first time using a Bayesian
inverse analysis. This study also shows that the inverse framework based on themeasurement network can be
an effective approach to quantifying emissions at the regional scale and monitoring long-term spatial and
temporal changes in emissions. Although the CO comparison (Bagley et al.) appears largely consistent with
expectation, it should be noted that undiagnosed sources of errors or uncaptured errors in the model-
measurement mismatch covariance may increase these uncertainty bounds beyond that indicated here.

In the future, a combination of improvedprior emissions andmeteorologicalmodels, expandedmultigasmea-
surements, and inverse model analyses will reduce uncertainty in California’s GHG emissions. Also, more
efforts are needed to constrain emissions by both sector and region. For example, while our results and other
studies indicate both livestock and natural gas emissions appear to be underestimated, attribution of themag-
nitude of errors to specific sectors is difficult. A recent study on CH4 emissions from the Aliso Canyon blowout
in Los Angeles emphasizes the utility of tracers (e.g., ethane) for source speciation [Conley et al., 2016]. Using
bothmethane and ethanemeasurements, Conley et al. [2016] reported that at its peak the Aliso Canyon event
doubled SoCAB emissions during the 3month period, producing a total of 97 GgCH4, which is 28% of the
SoCAB total CH4 emission (349Gg/yr) from our CALGEM prior model. Given the importance of distinguishing
the regional variations in dominant CH4 sources (e.g., Central Valley versus SoCAB) and large-scale events such
as the Aliso Canyon blowout, a combination of facility specific emission measurements and regionally
representative measurements of source-specific tracers (e.g., CO, VOCs, and potentially CH4 isotopes)
[Townsend-Small et al., 2012; Peischl et al., 2013; Guha et al., 2015] are likely to prove useful in the future.
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